Open and Reproducible Science
Anbieter*in
Center for Reproducible Science
Open Science Office
Open and reproducible science: general reasons and approaches 10SMOS_1
Beschreibung
Der Kurs ist in sechs Themen eingeteilt. Jedes Thema wird auf dem konzeptuellen Level eingeführt und die Konzepte werden in Hausaufgaben und Aufgaben während der Präsenzzeit, die die Benutzung der freien Programmiersprache für statistische Berechnungen und Grafiken R beinhalten, geübt.
- Einführung in Open Science und in den Zusammenhang mit wissenschaftlicher Integrität und reproduzierbarer Forschung
- Praktische Leitlinien für die Handhabung von Daten und Projekten im Hinblick auf Reproduzierbarkeit.
- Definition von Qualitätskriterien für gute Forschung insbesondere zur kritischen Einschätzung von Veröffentlichungen und Diskussion wie diese Kriterien mit Transparenz und Reproduzierbarkeit von Forschungsergebnissen zusammenhängen
- Einführung in einige Tools zur wissenschaftlichen Zusammenarbeit
- Einführung in reproduzierbare Notebooks für die Datenanalyse
- Umsetzung der Prinzipien von Open Science und reproduzierbarer Forschung bei der Visualisierung von Daten
Die Themen werden in sieben zweistündigen Präsenzübungsstunden behandelt, dazu gibt es zuerst digitalen Input und Hausaufgaben. In diesem flipped classroom lernen Studierende Konzepte mit Hilfe von Videos und Literatur im eigenen Tempo kennen und sie lösen dazu Aufgaben vor der Präsenzlektion. Die stetige Benutzung von R erlaubt es den Teilnehmern, mit Hilfe der Dozierenden Erfahrung und Vertrauen in der Benutzung von R während der 6 Kurswochen zu sammeln. Die Hausaufgaben und die Präsenzübungsstunden beinhalten Feedback und Bewertung von Peers und den Dozierenden.
Zielgruppe
Studierende aller Disziplinen, die zumindest teilweise empirisch arbeiten und eine Einführung in die empirische Forschung gehört haben. Es werden mittlere Computerkenntnisse vorausgesetzt: Studierende sollen die Verzeichnisstrukur ihres Devices kennen (wo ist eine Datei?) und sie sollen Pakete und Programme installieren können. Studierende sollen die Grundlagen von R beherrschen, das heisst, sie sollen einen Wert einem Objekt zuordnen können, sie sollen die Einträge in einem Objekt manipulieren und extrahieren können, sie sollen wissen, wie sie einfache Berechnungen wie Prozentanteile mit Objekten durchführen können, sie sollen Funktionen wie t.test benutzen können und sie sollen einfache Graphiken kreieren können. Studierende, die diese Grundlagen noch nicht haben, können die ersten drei Kapitel im Kurs "R for Social Scientists" auf https://datacarpentry.org/r-socialsci/ durcharbeiten.
Kursdaten
16.00 - 18.00 Uhr
Dienstag, 20.09.2022, 27.09.2022, 04.10.2022, 11.10.2022, 18.10.2022, 25.10.2022, 01.11.2022
Angebotsmuster
Jedes Semester
Leistungsnachweis / ECTS Credits
Portfolio Prüfung: 70% aller Inputaufgaben, Hausaufgaben und Präsenzaufgaben müssen gelöst werden, um den Kreditpunkt zu erhalten.
1 ECTS
Open and reproducible science: dependable computations and statistics 10SMOS_2
Beschreibung
Der Kurs ist in sechs Themen eingeteilt. Versionskontrolle mit Gitlab und die Tricks und Techniken, die in der Einheit über Reproduzierbares Programmieren vorgestellt werden, werden während der gesamten sieben Kurswochen eingeübt. Studierende erlangen und üben Fähigkeiten in der Programmierung mit R, wie z. B. das Schreiben und die Nutzung von massgeschneiderten Funktionen sowie die Nutzung von Modultests. Der praktische Teil beinhaltet verschiedene Aspekte guter statistischer Praxis wie zum Beispiel die korrekte Nutzung und Interpretation von P-Werten, Fallzahlplanung, Multiples und sequentielles Testen. Der Kurs endet mit einem summarischen Blick auf Metadaten und ihre Bedeutung für Reproduzierbarkeit.
- Versionskontrolle
- Reproduzierbares Programmieren
- Questionable Research Practices (QRP)
- Good statistical practice
- Werkzeuge in R für Metadatenhandhabung
Die Themen werden in sieben zweistündigen Präsenzübungsstunden behandelt, dazu gibt es zuerst digitalen Input und Hausaufgaben. In diesem flipped classroom lernen Studierende Konzepte mit Hilfe von Videos und Literatur im eigenen Tempo kennen, sie lösen dazu Aufgaben vor der Präsenzlektion. Der wiederholte Gebrauch von fortgeschrittenen Techniken in R, die die Zuverlässigkeit von Berechnungen erhöhen, ermöglicht den Studierenden, die notwendigen Fähigkeiten für fortgeschrittene datenanalytische Projekte zu erlangen. Die Hausaufgaben und die Präsenzübungsstunden beinhalten Feedback und Bewertung von Peers und den Dozierenden.
Zielgruppe
Studierende aller Disziplinen, die zumindest teilweise empirisch arbeiten. Die Teilnehmer haben erste Erfahrungen in der Forschung gesammelt, nutzen wissenschaftliche Literatur aktiv und haben eine Einführung in die Statistik gehört. Es werden gute Computerkenntnisse erwartet inklusive Erfahrung in der Benutzung von R (die Teilnehmer sind geübt in der Manipulation von Daten und Objekten und wissen, wie man existierende Funktionen und Packages benutzt).
Kursdaten
16.00 -18.00 Uhr
Dienstag, 08.11.2022, 15.11.2022, 22.11.2022, 29.11.2022, 06.12.2022, 13.12.2022, 20.12.2022
Angebotsmuster
Jedes FS und HS22
Leistungsnachweis / ECTS Credits
Portfolio Prüfung: 70% aller Inputaufgaben, Hausaufgaben und Präsenzaufgaben müssen gelöst werden, um den Kreditpunkt zu erhalten.
1 ECTS
Publishing Personal and Sensitive Data 10SMOD_4
Beschreibung
Der Kurs "Publishing Personal and Sensitive Data" macht die Teilnehmenden mit den rechtlichen Aspekten bei der Weitergabe und/oder Veröffentlichung von Daten vertraut, die persönliche und/oder sensible Informationen von Studienteilnehmenden enthalten. Die Studierenden lernen über Urheberrecht, Lizenzen, Datenschutz, Offenlegungsrisiko und Datennutzen und üben in praktischen Übungen reproduzierbare Anonymisierungstechniken (für qualitative und quantitative Daten).
Zielgruppe
Dieser Kurs richtet sich an Masterstudierende, Doktorierende und interessierte Bachelorstudierende, die mit personenbezogenen und/oder sensiblen Daten arbeiten. Teilnehmende, die mit quantitativen Daten arbeiten, sollten über Vorkenntnisse in R verfügen.
Kursdaten
Der Kurs findet in zwei Halbtagen statt, mit Online-Lernkomponenten vor und nach dem Kurs.
Donnerstag, 27.10.2022 (13.00 - 17.00 Uhr)
Donnerstag, 03.11.2022 (13.00 - 17.00 Uhr)
Der Kurs wird auf Englisch durchgeführt.
Angebotsmuster
Jedes Semester
Leistungsnachweis / ECTS Credits
Schriftlicher Leistungsnachweis / 1 ECTS
Der Kurs wird in Zusammenarbeit mit dem Center for Reproducible Science durchgeführt.
Themed combinations

If you need background knowledge before attempting a module which contains advanced topics for you or if you want to deepen or broaden your knowledge in a specific direction you can combine the Open and Reproducible Science Modules with Modules on Open Access/Open Data and/or Modules from Get R_eady, also offered at the School for Transdisciplinary Studies.
We suggest three combinations totalling 3 ECTS, these specific combinations logically fit together in a theme but all other module combinations are allowed as well.